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Abstract
The quantized Josephson junction equation that underpins the behaviour of
charge qubits and other tunnel devices is usually derived through canonical
quantization of the classical macroscopic Josephson relations. However, this
approach may neglect effects due to the fact that the charge qubit consists of a
superconducting island of finite size connected to a large superconductor. We
show that the well-known quantized Josephson equation can be derived directly
and simply from a microscopic many-body Hamiltonian. By choosing the
appropriate strong-coupling limit we produce a highly simplified Hamiltonian
that nevertheless allows us to go beyond the mean-field limit and predict further
finite-size terms in addition to the basic equation.

The Josephson effect [1] is still one of the phenomena that make superconductors such a
fascinating area of study. For instance, after some 40 years of intensive basic and applied
research there are still new features of the coherent tunnelling of Cooper pairs coming to light
in connection with junctions involving small superconducting grains. The new complications
arise from the fact that when one side of a Josephson junction is sufficiently small for the
charging energy to be relevant, quantum interplay between charging and tunnelling begins
to appear [2]. The standard approach to describing these junctions is to take the classical
equations of motion of the superconducting phase difference φD across the junctions and apply
canonical quantization rules to φD as a ‘position’ variable. Of course, the classical Josephson
equations for such a phase difference are first derived from microscopic theory [1], and so
this standard approach represents a ‘re-quantization’ of ‘classical’ equations that were in turn
derived from quantum mechanical microscopic theory using a mean-field theory that does not
take into account the charging energy of the island. Consequently, in such approaches the
description of quantum fluctuations is at best semi-phenomenological. In what follows we
examine the limitations of the above procedure on the basis of a simple model which permits
an exact treatment of a superconducting island coupled weakly to a bulk superconductor.
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To motivate our interest in the problem we note that much current experimental
and theoretical attention is focused on nanoscale superconducting grains coupled to large
superconductors as such ‘Cooper Pair Boxes’ are becoming realistic candidates for being
useful qubits in Quantum Information devices [3–6]. Starting with the work of Nakamura
et al [7], over the last few years there have been a number of impressive experiments [8–13]
demonstrating appropriate charge qubit behaviour and macroscopic tunnelling. As experiments
continue to improve, it is now pertinent to re-examine the standard approach to describing
quantum fluctuations in superconducting charge qubits and related systems. Clearly, in the
course of such investigation one would expect to reproduce the basic quantum phenomenology
from a fully microscopic approach within a well controlled approximation, as there is already
good experimental support for this. Nevertheless, a generalized theory will also yield new
additional terms due to the finite size of the superconducting islands and for future experiments
they could have significant consequences. To shed light on these, we examined a simple
microscopic model of a Cooper Pair box, showing how the familiar phenomenology emerges,
along with new finite-size effects.

1. Quantizing the Josephson relations

In the interest of clarity, we start our discussion by recalling, briefly, the usual
phenomenological approach to the problem at hand. The standard way to obtain the
Hamiltonian describing a small superconductor connected through Josephson tunnel junctions
to a bulk superconductor is by starting with the Josephson equations for φD and V , the
difference in phases of the two superconducting regions and the voltage across the junction,

I = IC sinφD (1)
dφD

dt
= 2eV

h̄
, (2)

where IC is the critical current of the junction. Although derived from a quantum mechanical
microscopic treatment, as evidenced by the appearance of h̄, these equations can be regarded
as classical equations of motion. We follow the standard procedure for canonical quantization
and first find the Lagrangian that leads to these equations. Namely, we take,

L = 1

2

h̄2C

4e2

(
dφD

dt

)2

+ h̄ IC

2e
cosφD, (3)

where we have introduced the total island capacitance, C . If we choose the phase φD to be the
canonical position variable, we can identify the canonical momentum π = ∂L/∂φ̇D,

π = h̄2C

4e2
φ̇D = h̄ CV

2e
= h̄(N − ng), (4)

and it is seen that the phase of the condensate and the excess number of Cooper pairs on the
island, (N − ng), are conjugate variables [3, 4]. The term ng represents an applied gate voltage
(in dimensionless units) and so the canonical momentum π = (N − ng) is effectively the
charge on the device, viewed as a capacitor, in units of 2e. Note that if the total charge on the
system is zero, this can be rewritten in terms of the charge difference. To quantize the system,
we introduce the commutation relation between conjugate variables [φD, π] = ih̄ and note that
this can be satisfied by writing π = −ih̄ ∂/∂φD − ng (keeping the gate voltage explicit). Then
the Hamiltonian, Ĥ = πφ̇D − L, is given by,

Ĥ = EC

(
i
∂

∂φD
− ng

)2

− EJ cosφD, (5)
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where the charging energy is given by EC = 2e2/C and EJ is defined as EJ = h̄ IC/2e. The
Schrödinger’s equation for the amplitude ψ(φD) is then,

Ĥψ(φD) = ih̄
d

dt
ψ(φD). (6)

Evidently, the probability that the phase difference takes on a certain value is given by |ψ(φD)|2.
This is the desired standard quantum description of the Josephson junction. In the

remainder of this paper, we show how the above quantized Josephson junction equation can
be rederived directly from the microscopic theory in a way that includes finite-size effects.

2. Finite superconductors as spins

We wish to produce a description of a finite superconductor that is simple enough to solve
exactly but retains properties due to its finite size. Specifically, we wish to be able to capture
effects that go beyond the mean-field approximation. Our starting point is the well-known BCS
Hamiltonian [14]:

Ĥ =
∑
k, σ

εkc†
k, σ ck, σ −

∑
k, k′

Vk, k′ c†
k↑c†

−k↓c−k′↓ck′↑, (7)

where c†
k, σ and ck, σ create and annihilate electrons, respectively, with spin σ in the state

k with energy εk and the matrix element Vk, k′ describes an attractive two body interaction.
As we are discussing a finite superconducting island, the label k,↑ does not refer to a free
electron wavevector but to a generic single-electron eigenstate, with −k,↓ representing the
corresponding time-reversed state.

A common approximation to this equation is made by assuming the pairing potential Vk, k′

is equal for all k, k ′ in a region around the Fermi energy determined by the cutoff energy h̄ωc

and zero outside this region. That is, Vk, k′ = V for |εk − εF| < h̄ωc and Vk, k′ = 0 otherwise.
This greatly simplifies matters whilst retaining the essential physics. We now adopt a similar
philosophy in making a further approximation, and take all the single-electron energy levels εk

within the cutoff region around the Fermi energy to be equal to the Fermi energy εF.
The interaction term, Vk,k′ acts only within the cutoff region around the Fermi energy.

Outside this region the Hamiltonian is diagonal and trivially solved. Writing the single-electron
energy as εk = εF + (εk − εF), we note that within the cutoff region |εk − εF| < h̄ωc, and thus
if V � h̄ωc, then |εk − εF| � V and we can discard the variation of εk . Thus in this strong-
coupling approximation, our Hamiltonian becomes,

Ĥ = εF

′∑
k

c†
k, σck, σ − V

′∑
k, k′

c†
k↑c†

−k↓c−k′↓ck′↑, (8)

where the dashes on the sums indicate that they are only taken over states within the cutoff
region.

Although this caricature of a realistic Hamiltonian represents an uncontrolled
approximation, we will show that it allows us to derive a Josephson junction equation that
goes beyond mean field, and that the results it produces agree in the strong-coupling limit with
known results in two important cases. Namely, the mean-field solution of this Hamiltonian
agrees with the BCS solution, and the exact solution agrees with the Richardson solution [15].

It should be noted that although many superconductors can be described as having strong
coupling, the BCS Hamiltonian is not necessarily appropriate for their description. Equation (8)
is hence not intended as a description of this particular class of superconductors, but rather as
a generic model that, although simplified, allows an exact solution and a description of the
physics we are trying to capture.
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As a consequence of the above simplifications equation (8) can now be written in terms of
the three operators [16],

ŜZ = 1
2

′∑
k

(
c†

k↑ck↑ + c†
−k↓c−k↓ − 1

)

Ŝ+ =
′∑
k

c†
k↑c†

−k↓

Ŝ− =
′∑
k

c−k↓ck↑.

(9)

Note that these operators obey the commutation relations, and therefore the algebra, of quantum
spin operators of size l/2, where l is the number of levels in the cutoff region. Thus the main
result of this section is the effective Hamiltonian,

Ĥsp = 2(εF − μ)

(
ŜZ + l

2

)
− V Ŝ+ Ŝ−, (10)

where we have introduced a chemical potential μ to describe coupling to a reservoir.

3. Exact solution

The eigenstates of equation (10) are the eigenstates of the spin operator ŜZ , | l
2 ,m N 〉, where the

component of the spin along the Z axis is given by m N = N − l/2 and N denotes the number
of Cooper pairs on the island. The eigenenergies corresponding to these eigenstates are,

EN = 2(εF − μ)N − V N(l − N + 1). (11)

A chemical potential allows us to specify the average number of Cooper pairs on the island in
equilibrium. In the case of the exact solution, where N is a good quantum number, this means
choosing a state with a particular value of N to be the ground state. We choose μ so that the
ground state is the state with a chosen value of N , which we label N̄ . The eigenenergies EN

therefore become,

EN = −V N(2N̄ − N), (12)

and the ground state is | l
2 ,m N̄ 〉, with energy,

Egs = −V N̄2. (13)

We can also easily see that although the pairing parameter 〈Ŝ+〉 = 0 in all eigenstates, i.e.
there is no symmetry breaking, we still have fluctuations as expected for a finite superconductor
which are given by 〈Ŝ+ Ŝ−〉 = N(l − N + 1) for a general eigenstate N and〈

l

2
,m N̄

∣∣∣∣ Ŝ+ Ŝ−
∣∣∣∣ l

2
,m N̄

〉
= N̄ (l − N̄ + 1) (14)

for the ground state. We also see that the operator Ŝ+ which couples eigenstates, corresponds
(when appropriately normalized) to the quasiparticle creation operator for the system.

4. Comparison to standard results

To generate confidence in this simple model, we compare its solutions to the solutions of the
full Hamiltonian (equation (7)) in two ways. First, we find the mean-field solution and compare
it to the BCS results. Second, we compare the exact solution to the Richardson solution in the
appropriate limit.

4
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4.1. The mean-field solution

The mean-field approximation arises from the assumption that the operators Ŝ± remain close to
their expectation values, 〈Ŝ±〉. We write Ŝ± = 〈Ŝ±〉+(Ŝ±−〈Ŝ±〉), and discard terms to second
order or higher in (Ŝ± − 〈Ŝ±〉). Writing V 〈Ŝ−〉 = 	, we find the mean-field Hamiltonian for
our model,

ĤMF = 2(εF − μ)

(
ŜZ + l

2

)
−	Ŝ+ −	∗ Ŝ− + |	|2

V
. (15)

Apart from the constant term, this is a linear combination of the spin operators ŜZ , ŜY and
ŜX and is therefore proportional to the projection of a spin operator on an unknown direction
specified by the unit vector n̂. Thus denoting Ŝ · n̂ by ŜZ

n̂ , we may write,

ĤMF = γ ŜZ
n̂ + |	|2

V
+ 2(εF − μ)

l

2
, (16)

and therefore the problem of diagonalizing equation (15) is equivalent to the problem of rotating
the axis of quantization for our effective spin operators. Requiring that the commutation
relations [ŜZ

n̂ , Ŝ+
n̂ ] = Ŝ+

n̂ hold for spin operators in the frame of reference where the axis of
quantization is along n̂ determines both an expression for Ŝ+

n̂ and the value of γ ,

Ŝ+
n̂ = 2	

γ

(
ŜZ − 	

2ξF − γ
Ŝ+ − 	∗

2ξF + γ
Ŝ−

)

γ = 2
√
(ξF)2 + |	|2,

(17)

where ξF = εF−μ and we note that γ = 2EF, the energy of a Cooper pair evaluated at the Fermi
energy. The ground state of our Hamiltonian can now be trivially found, as it corresponds to the
m = −l/2 eigenstate of the operator ŜZ

n̂ . Recalling that a maximal m state of a spin operator
pointing in one direction is a spin coherent state [17] in any other we find,

|α〉 = 1√
(1 + |α|2)l

l∑
N=0

(α∗ Ŝ+)N | l
2 ,m0〉

N !

= 1√
(1 + |α|2)l

∏
k

(1 + α∗ c†
k↑c†

−k↓)
∣∣∣∣ l

2
,m0

〉
. (18)

As one might expect, the second line is a way of writing the BCS ground state wavefunction
in the limit where all the levels have equal probability of occupation, i.e. uk/vk = α∗ for all
k. Making use of equation (16) and the fact that Ŝ−

n̂ |α〉 = 0 for the ground state, we find that
α = (ξF − EF)/	. To complete the calculation, we need to self-consistently determine the
values 	 and μ, which is relatively simple in the spin model and gives,

|	|2 = V 2 N̄(l − N̄ ) (19)

εF − μ = V (l/2 − N̄) (20)

HSMF|α〉 = −V N̄2|α〉 (21)

where N̄ is the average occupation of the island. We find equations (18)–(21) are exactly
equal to the expressions found if we were to solve the full BCS equation and then take
the weak-coupling limit (this is shown in the appendix of [18]). Comparing the mean-field
solution to the exact solution, we see that, surprisingly, the exact (equation (13)) and mean
field (equation (21)) ground state energies are identical. However, we have a non-zero pairing
parameter 〈S−〉 = 	/V and the expectation value of the mean-field coupling term,

〈α| −	Ŝ+ −	∗ Ŝ− + |	|2
V

|α〉 = −V N̄ (l − N̄), (22)

5
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neglects the quantum fluctuations present in the exact solution,〈
l

2
,m N̄

∣∣∣∣ − V Ŝ+ Ŝ−
∣∣∣∣ l

2
,m N̄

〉
= −V N̄ (l − N̄ + 1) (23)

in much the same way a classical spin neglects the fluctuations present in a quantum spin,
i.e. the eigenvalues of Ŝ2 are S(S + 1) and not the classical values S2.

4.2. The Richardson solution

Unbeknownst to the condensed matter community for many years, there exists an exact solution
to the BCS Hamiltonian (equation (7)) for finite superconductors, first discovered in 1963 by
Richardson [15, 19, 20] in the context of nuclear physics. It has been shown that this solution
reproduces the BCS result in the bulk limit, but it is difficult to work with for any island
occupied by more than a few Cooper pairs. The Richardson solution requires the introduction
of operators that diagonalize the full (i.e. not mean field) BCS Hamiltonian,

Ĥ =
N∑
ν=1

EJν B̂+
Jν B̂−

Jν (24)

B̂+
Jν =

∑
k

c†
k↑c†

−k↓
2εk − EJν

, (25)

where the sum in equation (24) runs over ν up to the total number of Cooper pairs on the island.
The parameters EJν are found by solving the equations,

1 + 2V

EJη − EJν
= V

∑
k

1

2εk − EJν
, (26)

for all ν.
Whilst the usual BCS theory has an essential singularity at V = 0, the theory is well

behaved near 1/V ∼ 0. Thus, following Altshuler et al [21] we expand equation (26) in
powers of h̄ωc/V . Using εk ∼ εF leads to,

1

V
+

N∑
ν=1

2

EJη − EJν
= l

(EJη − 2εF)
+

l∑
k=1

2(εk − εF)

(EJη − 2εF)2
. (27)

Now discard the second term on the right as negligible, multiply by EJη − 2εF, and sum over
the N parameters EJη to obtain,

N∑
η=1

EJη − 2εF

V
+ N(N − 1)+ 0 = Nl, (28)

where the double sums over η, ν have either vanished, or gone to N(N − 1) due to symmetry.
Finally, we recall that the energy of the Richardson solution is given by a sum over EJη, and
rewrite equation (28) to get the energy of an island containing N Cooper pairs:

EN = 2εF N − V N(l − N + 1). (29)

As heralded in the introduction this result matches the exact energy of the spin Hamiltonian as
given in equation (11) for μ = 0.

Thus we have shown that although we have made a significant approximation to the
Hamiltonian, the results thereby derived are consistent with results obtained by solving the
full system in either the mean-field approximation or exactly, and then taking the appropriate
limit.

6
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5. Phase representation of the spin operators ̂S+ and ̂S−

The preceding sections have established our model of a finite superconducting system as a
large spin, as given in equation (10). We shall now go on to show how this model can be used
to derive a phase-representation description of the Josephson effect in a system comprising a
small island coupled to a larger piece of bulk superconductor.

We wish to convert to a representation in terms of the continuous phase variable φ,
i.e. convert from ket notation to wavefunction ψ(φ) and differential operator (such as d

dφ )
notation. Thus, a ket |ψa〉 will become a wavefunction 〈φ|ψa〉, and the differential operator
must be consistent with this. Defining the state |φ〉 = (2π)−1/2

∑
eiφN | l

2 ,m N 〉, we find that
the wavefunction corresponding to | l

2 ,m N 〉 is (2π)−1/2e−iφN . We can then examine how the
operators act on this wavefunction.

ŜZ

〈
φ

∣∣∣∣ l

2
,m N

〉
= 〈φ|

(
N − l

2

) ∣∣∣∣ l

2
,m N

〉

=
(

N − l

2

) 〈
φ

∣∣∣∣ l

2
,m N

〉

=
(

N − l

2

)
e−iφN

√
2π

ŜZψ(φ) =
(

i
∂

∂φ
− l

2

)
ψ(φ).

(30)

Similarly, we find for the raising operator,

Ŝ+
〈
φ

∣∣∣∣ l

2
,m N

〉
= 〈φ|√(N + 1)(l − N)

∣∣∣∣ l

2
,m N

〉

Ŝ+ψ(φ) = e−iφ

√(
i
∂

∂φ
+ 1

) (
l − i

∂

∂φ

)
ψ(φ),

(31)

with the lowering operator given by,

Ŝ−
〈
φ

∣∣∣∣ l

2
,m N

〉
= 〈φ|√N(l − N + 1)

∣∣∣∣ l

2
,m N

〉

Ŝ−ψ(φ) = eiφ

√
i
∂

∂φ

(
l − i

∂

∂φ
+ 1

)
ψ(φ).

(32)

Collecting the differential forms for the operators and rewriting S+ and S− into a more
convenient form leaves us with,

ŜZ =
(

i
∂

∂φ
− l

2

)

Ŝ± =
√(

l

2
±

(
i
∂

∂φ
− l

2

))
e∓iφ

√(
l

2
∓

(
i
∂

∂φ
− l

2

))
.

(33)

The form of the raising and lowering operators can also be derived by requiring that the
commutation relations for quantum spins are enforced. We see that it is the (i ∂

∂φ
− l

2 ) terms in
the S+, S− operators that take into account the finite-size effects and ensure that [S+, S−] = 0.

Writing the operators in this form allows us to take the large size (l → ∞) limit. In taking
this limit we assume that SZ � l

2 . In the superconducting language, this corresponds to only
states close to half filling being occupied. Specifically, we assume,∣∣∣∣

〈
l

2
,m N

∣∣∣∣ψ
〉∣∣∣∣ ∼ 0 for

∣∣∣∣N − l

2

∣∣∣∣ �
(

l

2

)1/2

, (34)

7
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a condition which is fulfilled for coherent states with N̄ set close to l
2 . When this is true, we can

expand the square root in (i ∂
∂φ

− l
2 )/ l. We see that the leading order terms give S± = l

2 e∓iφ ,
and we regain the semiclassical large-size limit for which [S+, S−] = 0 as discussed by Lee
and Scully [16].

6. Quantized Josephson junction equation

We can now use the forms of the operators given in equations (33) to write down the quantized
Josephson equation. We begin with a Hamiltonian that describes a finite superconducting island
coupled to a superconducting reservoir,

Ĥ = ĤI + ĤR + ĤC + ĤT, (35)

where ĤI and ĤR are the BCS Hamiltonians on the island and reservoir respectively, and we
introduce Hamiltonians representing the charging energy of the island,

ĤC = 4e2

2C
(N̂I − ng)

2 (36)

and the tunnelling between island and reservoir,

ĤT = −T
∑
k,q

c†
k c†

−kc−qcq + c†
qc†

−q c−kck, (37)

where T is the standard tunnelling matrix element for Cooper pairs [22], which we assume for
simplicity to be real and independent of k, q . If we make our strong-coupling approximation
and assume that all the electronic energy levels can be considered equal, we can write these
Hamiltonians in terms of spin operators, as follows:

ĤI = 2(εFI − μI)Ŝ
Z
I − VI Ŝ

+
I Ŝ−

1

ĤR = 2(εFR − μR)Ŝ
Z
R − VR Ŝ+

R Ŝ−
R

ĤC = 4e2

2C
(ŜZ

I + lI/2 − ng)
2

ĤT = −T
(
Ŝ+

I Ŝ−
R + Ŝ−

I Ŝ+
R

)
.

(38)

Inserting these expressions into equation (35), we obtain

Ĥ = E ′
C(Ŝ

Z
I − n′

g)
2 − T (Ŝ+

I Ŝ−
R + Ŝ−

I Ŝ+
R ), (39)

where we have incorporated the terms from ĤI linear and quadratic in ŜZ
I into the renormalized

charging energy and gate voltage represented by E ′
C and n′

g respectively. In the limit that both
the reservoir and the island can be considered infinite, we regain the standard form for the
quantized Josephson junction Hamiltonian,

Ĥ = E ′
C

(
i
∂

∂φI
− n′

g

)2

− T
lRlI

2
cos(φI − φR), (40)

suggesting that equation (6) can be considered as a large-size limit where the finite size of the
island can be neglected. However, we are now able to obtain, using equation (33), the next
terms in the series expansion,

Ĥ = E ′
C

(
i
∂

∂φI
− n′

g

)2

− T
lR

2

{
(lI + 1) cos(φI − φR)− 2

lI

(
i
∂

∂φI
− lI

2

)2

cos(φI − φR)

− 2

lIi

(
i
∂

∂φI
− lI

2

)
sin(φI − φR)+ · · ·

}
. (41)

8
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We find that the new terms involve products of both the phase and the charge operators. Thus the
Josephson tunnelling term effectively depends on the island charge. Making an analogy with a
particle in a potential, with a position corresponding to the phase, we see that the extra terms in
equation (41) can be thought of as a velocity-dependent potential. This effect also breaks the
periodicity of the island energy with n′

g, i.e. the energy now depends on the absolute value of
n′

g, rather than merely its value modulo 1. In this derivation we have assumed that the single-
electron energies are all equal, and thus the occupations uk/vk are all equal. However, these
occupations maintain a similar order of magnitude when different, and so we would expect the
extra terms in equation (41) to be of a similar size when the strong-coupling approximation is
relaxed.

We can make an estimate of the size of these effects for an island of a given size by
calculating lI, the number of electrons within the cutoff region, by comparing the level spacing
to the Debye energy. For an island with a volume equal to that described in [7], we find that
lI ≈ 6 × 105, and thus the additional terms in equation (41) (proportional to 1/ lI are unlikely
to be significant. If we consider instead a nanograin of the type described in [19, 20, 23], we
find that lI ≈ 400, and thus the extra terms may be relevant.

7. Conclusions

We have shown how the quantum Josephson junction equation, usually derived by re-quantizing
the mean-field equations of motion, can be directly derived from a microscopic description of a
superconducting island. We used a simplified Hamiltonian in which the energy of the individual
microscopic electron levels is considered equal that allowed an exact solution to be found. We
have shown how a mean-field approximation leads to a solution that corresponds to a spin
coherent state, which is the BCS state in the appropriate limit. As well as illustrating how the
familiar phenomenology emerges through the mean-field approximation, we showed we can
describe effects beyond the mean field, such as quantum fluctuations. We went on to rederive
the Josephson junction equation and describe size dependent corrections to the familiar terms.
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